Separable Statistics and Multivariate Linear Cryptanalysis

Stian Fauskanger¹ Igor Semaev²

Norwegian Defence Research Establishment (FFI), PB 25, 2027 Kjeller, Norway

Department of Informatics, University of Bergen, Bergen, Norway

Boolean Functions and their Applications (BFA), July, 2017

Image: A match a ma

We define

 $A = (X_{16}[24, 18, 7, 29], X_{15}[16, 15, 14, 13, 12, 11], X_2[24, 18, 7, 29]).$

The probability distribution of A depends on somme 7-bit \tilde{k} . We know (approximately) the probability distribution of A:

$$p(k) = (p_0, ..., p_{2^{14}-1}),$$

where

$$p_i = \mathbf{Pr}\left(A = i \mid \tilde{k} = k\right).$$

 $A = (X_{16}[24, 18, 7, 29], X_{15}[16, 15, 14, 13, 12, 11], X_2[24, 18, 7, 29]).$

We want to use A in a known plaintext attack on DES but X_2 and X_{15} is not part of the plaintext or ciphertext. We can, however, compute the relevant bits in X_2 and X_{15} from X_0, X_1, X_{16}, X_{17} and some 42-bit \overline{k} .

Original image src (without variable names): wikimedia.org

・ロト ・回ト ・ ヨト

 $A = (X_{16}[24, 18, 7, 29], X_{15}[16, 15, 14, 13, 12, 11], X_2[24, 18, 7, 29]).$

We want to use A in a known plaintext attack on DES but X_2 and X_{15} is not part of the plaintext or ciphertext. We can, however, compute the relevant bits in X_2 and X_{15} from X_0, X_1, X_{16}, X_{17} and some 42-bit \bar{k} .

Problem

 $k \cup \bar{k} = 45$. We want time and data complexity to be $< 2^{43}$. Using the above vector in multivariate linear cryptanalysis [Hermelin et al.] would require that we rank 2^{45} key-candidates.

Instead of using A, we use 10-bit projections of A:

$$\begin{split} &A^{(j)} = (X_{16}[24, 18, 7, 29], X_{15}[a_j, b_j], X_2[24, 18, 7, 29]), \\ &a_j, b_j \in \{16, 15, 14, 13, 12, 11\}, \\ &a_j > b_j, \\ &a_j, b_j) \neq (16, 11). \end{split}$$

There are 14 projections, $A^{(1)}, ..., A^{(14)}$. The probability distribution of $A^{(j)}$ can be computed from the probability distribution of A, and depends on some 2- or 3-bit $\tilde{k}^{(j)}$.

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

 $A^{(j)} = (X_{16}[24, 18, 7, 29], X_{15}[a_j, b_j], X_2[24, 18, 7, 29]).$

Like before, we want to use $A^{(j)}$ in a known plaintext attack but X_2 and X_{15} is not part of the plaintext or ciphertext. We can, however, compute the relevant bits in X_2 and X_{15} from X_0, X_1, X_{16}, X_{17} and some 18-bit $\bar{k}^{(j)}$.

In total $A^{(j)}$ depends on 18-21 key-bits, denoted by $K^{(j)} = \bar{k}^{(j)} \cup \tilde{k}^{(j)}$. 18 key-bits are needed to compute $A^{(j)}$ from a plaintext-ciphertext pair, and the distribution of $A^{(j)}$ depends on 2-3, possibly overlapping, key-bits.

Image: A math a math

We observe *n* plaintext/ciphertext pairs all encrypted using the same key. We run over all plaintext-ciphertext pairs and compute the number of occurrences for each possible value of $A^{(j)}$ for all $\bar{k}^{(j)}$. We define a random vector (observation vector) for each $\bar{k}^{(j)}$

$$V^{(j)}(k) = (v_0^{(j)}, ..., v_{2^{10}-1}^{(j)}),$$

where $v_i^{(j)}$ is the number of times $A^{(j)} = i$ assuming $\bar{k}^{(j)} = k$.

$$V^{(j)}(k) = (v_0^{(j)}, ..., v_{2^{10}-1}^{(j)})$$

is a random vector that follows multinomial distribution with n samples and some vector of probabilities, q. We have that:

	guess of $K^{(j)}$ correct	guess of $K^{(j)}$ incorrect
q =		$(2^{-10},, 2^{-10})$
	$n imes p_i^{(j)}$	$n \times 2^{-10}$
$Var[v_i^{(j)}] =$	$n imes p_i^{(j)} imes (1 - p_i^{(j)})$	$n \times 2^{-10} \times (1 - 2^{-10})$
$Cov[v_i^{(j)}, v_j^{(j)}] =$	$n \times p_i^{(j)} \times p_j^{(j)}$	$n \times 2^{-20}$

イロト イロト イヨト イ

We compute the statistic $c^{(j)}(K^{(j)})$ for all possible realisations of $K^{(j)}$ and for all *j*. $c^{(j)}(K^{(j)})$ is the log-likelihood-ratio of a correct guess of $K^{(j)}$, over an incorrect guess of of $K^{(j)}$.

$$c^{(j)}(\mathbf{K}^{(j)}) = \log_2\left(\prod_i \left(\frac{p_i^{(j)}}{2^{-10}}\right)^{\mathbf{v}_i^{(j)}}\right) = \sum_i v_i^{(j)} \times (\log_2(p_i^{(j)}) + 10)$$

There are $< 14 \times 2^{21}$ possible realisations of $K^{(j)}$ in total. Computing $c^{(j)}(K^{(j)})$ for all of them can be done efficiently using fast Walsh-Hadamard Transform. The complexity is $O(2^{37})$ operations using $O(2^{28})$ memory.

・ロン ・回 と ・ ヨン・

Because of symmetry in DES it's trivial to duplicate all previous work using both A and A', which we assume are statistically independent.

 $\begin{aligned} A &= (X_{16}[24, 18, 7, 29], X_{15}[16, 15, 14, 13, 12, 11], X_2[24, 18, 7, 29]) , \\ A' &= (X_1[24, 18, 7, 29], X_2[16, 15, 14, 13, 12, 11], X_{15}[24, 18, 7, 29]) . \end{aligned}$

We use 14 10-bit projections from each of them. $A^{(1)}, ..., A^{(14)}$ are projections of A and $A^{(15)}, ..., A^{(28)}$ are projections of A'. We now have 28 sub-keys, $K^{(1)}, ..., K^{(28)}$, and a statistic associated to each possible key value. That is, we have $< 28 \times 2^{21}$ different $c^{(j)}(K^{(j)})$.

・ロト ・日下・ ・ ヨト・

Let K be a 54-bit sub-key of the 56-bit key in DES. K is the union of $K^{(1)}, ..., K^{(28)}$. We want to use the previous statistics to find a good key candidate for K. We define two separable statistics

$$C(K) = \sum_{j=1}^{14} w_j \times c^{(j)}(K^{(j)})$$
 and $C'(K) = \sum_{j=15}^{28} w_j \times c^{(j)}(K^{(j)}).$

We built a search tree from the statistics $c^{(j)}(K^{(j)})$ and designed an algorithm that goes through the tree to find 54-bit key candidates, K. A key candidate is accepted if C(K) > z and C'(K) > zsimultaneous, for some optimal weights w_j and a parameter z. The remaining 2 key-bits are brute forced for each key candidate.

・ロト ・回ト ・ヨト

The complexity of our attack is measured by n (number of plaintext-ciphertext pairs), the number of nodes visited while traversing the search tree and the number of encryptions to brute force the remaining 2 key-bits for all candidates.

C(K) and C'(K) are normally distributed. We choose z so that n/4 candidates for K are accepted. n encryptions is then performed.

The probability that our attack is successfull is the probability that C(K) > z and C'(K) > z for correct K.

In particular, we set $n = 2^{41.8}$ and z so that the expected number of accepted candidates is $2^{39.8}$. Running the full attack returned $2^{39.46}$ candidates while visiting $2^{45.78}$ nodes in the search tree. Visiting one node is a simpler operation than one DES encryption, so the total time and data complexity is about $2^{41.8}$ encryptions. We are working on reducing the number of nodes visited.

イロト イヨト イヨト イヨト

Questions?

イロト イヨト イヨト イヨト